

The University of Manchester

Spatio-Angular Convolutions for Super-resolution in Diffusion MRI

Matthew Lyon¹, Paul Armitage², Mauricio A Álvarez¹

¹University of Manchester, ²University of Sheffield

Convolutions in Q-Space $\mathbf{x}_4 = [0.6, 0.7, 0.7, 1.0, 0.6, 0.3]$ $\mathbf{y}_6 = [0.7, 0.8, 0.7, 1.0, 0.0, 0.0]$ $\mathbf{x}_6 = [0.7, 0.8, 0.7, 1.0, 0.6, 1.3]$ $\mathbf{y}_6 = [0.7, 0.8, 0.7, 1.0, 0.0, 0.0]$ $f(\mathbf{x})$ $g(\mathbf{e}; \theta)$ $f(\mathbf{x})$ $g(\mathbf{e}; \theta)$ $h(\mathbf{y})$

Parameter Count								
	Model	Parameters						
	SR-q-DL ⁴	0.52						
	PCCNN	0.77						
	PCCNN-Bv	0.79						
	PCCNN-Bv-Sp	0.85						
	RCNN ¹	6.82						
	Q-Space CGAN ²	13.60						
	FOD-Net ⁵	48.17						

Total number of parameters, in millions, of different angular super-resolution models.

PCCNN Angular Super-resolution Model

Multi-shell dMRI Mean Absolute Error

Parametric continuous convolutions³ extends the discrete convolution operation into the continuous domain by replacing the convolutional weights tensor with a continuous function g.

Parametric Continuous Convolution Operation

Parametric Continuous Convolution

$$h_{k,j}(\mathbf{y}_j) = \sum_{c=1}^C \sum_{i=1}^N f_{c,i}(\mathbf{x}_i) g_{c,k}(\mathbf{e}; \boldsymbol{\theta})$$

C and K denote the input and output feature dimensions respectively.

Coordinate Embedding

 $\mathbf{e} = [\boldsymbol{\gamma}(p_1), \boldsymbol{\gamma}(p_2), \cdots, \boldsymbol{\gamma}(p_E)]^\top$ $\boldsymbol{\gamma}(p_m) = [\sin (2^0 \pi p_m), \cos (2^0 \pi p_m), \cdots, \sin (2^{L-1} \pi p_m), \cos (2^{L-1} \pi p_m)]$ $p_m \text{ is the } m \text{th component of the coordinate vector } \mathbf{p} \in \mathbb{R}^E \text{ given by}$ $\mathbf{p} = [u_i - u_j, v_i - v_j, w_i - w_j, \rho_i - \rho_j, d_r]$

Sampled Kernel Weights

Visualisation of kernel weights sampled from $g_{c,k}(\mathbf{e}; \boldsymbol{\theta})$. Spatial coordinate components in \mathbf{e} are kept constant, whilst angular components vary.

Fibre Orientation Distribution

Single-shell angular super-resolution with $q_{\rm in} = 6$ in $b = 1000 \, {\rm s/mm^2}$.

(a) RCNN¹

(b) PCCNN-Bv-Sp

(c) Q-space $CGAN^2$

Orientation Dispersion

	$q_{\rm in} = 6$		$q_{\rm in} = 10$		$q_{\rm in} = 20$	
	FOD ACC ↑	AFD AE↓	FOD ACC ↑	AFD AE↓	FOD ACC ↑	AFD AE↓
Lowres	0.653 ± 0.008	0.157 ± 0.014	0.724 ± 0.008	0.119 ± 0.012	0.757 ± 0.010	0.086 ± 0.011
FOD-Net ⁵	0.743 ± 0.008	0.087 ± 0.005	0.767 ± 0.006	0.072 ± 0.004	0.776 ± 0.008	0.062 ± 0.004
RCNN ¹	0.685 ± 0.010	0.087 ± 0.006	0.749 ± 0.009	0.080 ± 0.006	0.765 ± 0.010	0.079 ± 0.006
PCCNN	0.658 ± 0.009	0.090 ± 0.005	0.753 ± 0.008	0.077 ± 0.005	0.792 ± 0.009	0.068 ± 0.006
PCCNN-Bv	0.681 ± 0.010	0.091 ± 0.005	0.770 ± 0.011	0.080 ± 0.006	0.807 ± 0.011	0.074 ± 0.006
PCCNN-Bv-Sp	0.675 ± 0.013	0.089 ± 0.005	0.766 ± 0.014	0.075 ± 0.006	0.798 ± 0.015	0.067 ± 0.006

Mulit-shell angular super-resolution with varying input angular dimension size q_{in} for fibre orientation distrubution (FOD) angular correlation coefficient (ACC) and apparent fibre density (AFD) absolute error (AE).

References

- [1] Matthew Lyon, Paul Armitage, and Mauricio A Álvarez. Angular super-resolution in diffusion mri with a 3d recurrent convolutional autoencoder. In International Conference on Medical Imaging with Deep Learning, pages 834–846. PMLR, 2022.
- [2] Mengwei Ren, Heejong Kim, Neel Dey, and Guido Gerig. Q-space conditioned translation networks for directional synthesis of diffusion weighted images from multi-modal structural mri. In *Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VII 24*, pages 530–540. Springer, 2021.
- [3] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep parametric continuous convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2589–2597, 2018.
- [4] Chuyang Ye, Yu Qin, Chenghao Liu, Yuxing Li, Xiangzhu Zeng, and Zhiwen Liu. Super-resolved q-space deep learning. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22, pages 582–589. Springer, 2019.
- [5] Rui Zeng, Jinglei Lv, He Wang, Luping Zhou, Michael Barnett, Fernando Calamante, and Chenyu Wang. Fod-net: A deep learning method for fiber orientation distribution angular super resolution. *Medical Image Analysis*, 79:102431, 2022.

