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High resolution diffusion MRI (dMRI) data is often constrained by limited scanning time in clinical settings, thus restricting the use of downstream analysis techniques that would otherwise be
available. In this work we develop a 3D recurrent convolutional neural network (RCNN) capable of super-resolving dMRI volumes in the angular (q-space) domain. Our approach formulates
the task of angular super-resolution as a patch-wise regression using a 3D autoencoder conditioned on target b-vectors. Within the network we use a convolutional long short term memory
(ConvLSTM) cell to model the relationship between q-space samples. Code for this project is available at https://github.com/m-lyon/dMRI-RCNN

Data

Human Connectome Project (HCP) dMRI data is used for both training and evaluation,
and is initially processed with the standard HCP pre-processing pipeline [1]. Each 4D dMRI
volume within each subject in the HCP dataset contains three shells of b-values 1000, 2000,
and 3000. Each shell is processed independently and contains 90 diffusion directions, of
which the low angular resolution dataset are subsampled from. Data are denoised using
the patch2self algorithm [2]. Training, validation, and test datasets comprised of data from
27, 3, and 8 HCP subjects, respectively.

Model Architecture

Figure 1: RCNN model design. Q-space context data Ci are given to the encoder sequentially until all
context examples Cqin are seen. The internal hidden state of the ConvLSTM is passed to the 3D CNN
decoder along with target data Ti to infer 3D dMRI patches along the given diffusion direction.

Figure 2: 3D RCNN model diagram with convolutional filter sizes and channel dimensions. Each convolution
node specifies the number of filters used (left) and filter size (right).

Parallel convolution blocks are used within the encoder and decoder that apply a convo-
lution operation to the same input in parallel. The non-pointwise kernels have padding
applied prior to the convolution operation, such that the resultant shape is equal to the
unpadded input tensor. These blocks are inspired by work done in [3]. All convolutional
layers use a stride of (1 × 1 × 1). Hyperparameters used for each layer were obtained by
a hyperparameter search using the Hyperband algorithm [4]. Models were trained for 120
epochs using the optimizer Adam [5] with MAE loss function and a learning rate of 0.001.
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Model Performance

3D RCNN angular super-resolution was compared against a spherical harmonic (SH) in-
terpolation baseline, a 1D variant of the same architecture, and a non-recurrent (CNN)
version of the network.

qin = 6, qout = 84 qin = 10, qout = 80 qin = 30, qout = 60

Model RMSE MSSIM RMSE MSSIM RMSE MSSIM

SH Interpolation 119.0 ± 50.3 0.9460 ± 0.0419 65.1 ± 12.7 0.9854 ± 0.0044 63.8 ± 10.4 0.9867 ± 0.0033
1D RCNN 102.5 ± 31.6 0.9639 ± 0.0225 70.0 ± 15.1 0.9852 ± 0.0054 64.1 ± 10.6 0.9875 ± 0.0033
3D CNN 84.8 ± 15.9 0.9758 ± 0.0085 68.3 ± 12.6 0.9855 ± 0.0043 66.4 ± 10.4 0.9873 ± 0.0032

3D RCNN 78.4 ± 13.9 0.9787 ± 0.0071 63.4 ± 12.5 0.9870 ± 0.0040 63.4 ± 10.2 0.9876 ± 0.0032

Table 1: Average performance of angular super-resolution in eight subjects with b = 1000 across different
models. Best results are highlighted in bold.

b = 1000 b = 2000 b = 3000

Model RMSE MSSIM RMSE MSSIM RMSE MSSIM

SH Interpolation 65.1 ± 12.7 0.9854 ± 0.0044 64.5 ± 9.1 0.9659 ± 0.0088 66.7 ± 13.5 0.9292 ± 0.0242
1D RCNN 70.0 ± 15.1 0.9852 ± 0.0054 51.3 ± 6.7 0.9766 ± 0.0056 48.1 ± 8.0 0.9566 ± 0.0133
3D CNN 68.3 ± 12.6 0.9855 ± 0.0043 50.0 ± 6.3 0.9779 ± 0.0048 70.7 ± 12.7 0.9350 ± 0.0157

3D RCNN 63.4 ± 12.5 0.9870 ± 0.0040 48.1 ± 6.2 0.9796 ± 0.0045 42.6 ± 5.5 0.9633 ± 0.0088

Table 2: Average performance of angular super-resolution in eight subjects with qin = 10 and qout = 80.
Best results are highlighted in bold.
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Figure 3: Axial slice of RMSE in one subject from the test dataset. Angular super-resolution is performed
with qin = 6, qout = 84. Each pixel is the RMSE averaged across qout directions. WM and GM values are
the RMSE averaged across spatial voxels and qout directions.

DTI Analysis
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Figure 4: Axial slice of FA average error in one subject from the test dataset. Angular super-resolution is
performed with qin = 6, qout = 84. WM and GM values are averaged across voxels only within the WM
and GM mask, respectively. The baseline FA map is calculated from qin volumes whilst other FA maps are
derived from both qin and qout data.

Conclusions and Further Work

1. 3D RCNN architecture has the lowest error rates across various subsampling ratios and
b-values when compared against other super angular resolution techniques.

2. 3D RCNN architecture can be used at very low angular resolution for DTI analysis.

3. Further work is needed to quantify robustness of this methodology in out-of-distribution
datasets, as well as multi-shell angular super-resolution.


